Gaze2Prompt: Turning Eye-Tracking Data into Visual Prompts for
Multimodal LLMs

Jae Young Choi Seon Gyeom Kim Jaywoong Jeong
Korea Advanced Institute of Science Korea Advanced Institute of Science Korea Advanced Institute of Science
and Technology (KAIST) and Technology (KAIST) and Technology (KAIST)

Daejeon, Republic of Korea
jaeyoungchoi@kaist.ac.kr

Daejeon, Republic of Korea
ksg_0320@kKkaist.ac.kr

Daejeon, Republic of Korea
jaywoong.jeong@kaist.ac.kr

Ryan A. Rossi Jihyung Kil Tak Yeon Lee
Adobe Research Adobe Research Korea Advanced Institute of Science
San Jose, California, USA San Jose, California, USA and Technology (KAIST)
ryrossi@adobe.com jkil@adobe.com Daejeon, Republic of Korea

Abstract

Large Language Models (LLMs) are increasingly being adapted to
interpret the physical world through sensor data. However, feed-
ing raw sensor data (e.g., eye-tracking) into these models as text
prompts can lead to excessive token overhead and degraded model
performance. This study proposes an alternative approach: trans-
forming eye-tracking data into visual representations that serve as
prompts for Multimodal Large Language Models (MLLMs). Specif-
ically, we explore three types of visualizations—time-series plot,
scanpath, and heatmap—and evaluate their effectiveness on a six-
class eye-tracking classification task under zero-shot and one-shot
conditions. Our results show that visual prompts not only reduce
input tokens by over 85% but also significantly improve accuracy.
The heatmap’s one-shot accuracy of 73.9% was substantially higher
than the 37.8% achieved with raw text. These findings highlight
how visual abstraction facilitates the integration of trajectory-based
sensor data into MLLM-driven reasoning pipelines.
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1 Introduction

The capabilities of Large Language Models (LLMs) are evolving
to comprehend real-world phenomena, including human behavior
[18]. Recent studies used sensor data collected via EEG, accelerom-
eter, 3-D LiDAR, and ECG as input for LLMs [3, 7-9, 19-21]. The
primary goal of these studies was to explore how LLMs can perform
classification, reasoning, data processing, and prediction tasks us-
ing sensor data. For example, Xu et al. [18] demonstrated that LLMs
can discern user motion and detect heartbeat peaks without task-
specific feature engineering. Based on this, Ji et al. [8] evaluated
GPT-4 on a human activity recognition task in a zero-shot setting.
Furthermore, Xue et al. [19] and Gruver et al. [7] showed that LLMs
can process time-series data for forecasting tasks, highlighting their
potential for sequence modeling.

Sensor data is commonly integrated into LLMs by representing
it as raw text in input prompts [10]. However, this approach can
lead to reduced model performance when processing long contexts,
as well as high token consumption, resulting in high computational
and financial costs [11, 22]. In response to these challenges, Yoon et
al. [22] transformed sensor data into chart images and used them as
visual prompts for Multimodal Large Language Models (MLLMs).
This approach effectively condensed long data sequences into a
single image, reducing token overhead and enhancing the accu-
racy of classification tasks. In previous studies, sensor data such as
accelerometers, ECG, EMG, respiration, and audio have been visu-
alized using raw signal plots or spectrograms as inputs for MLLMs
[4, 22]. While these visualizations are tested on time-series data
that represents signal amplitude over time or frequency compo-
nents, spatially grounded data such as trajectory or tracking data
have not been explored in this context. For instance, eye-tracking
data contains two-dimensional spatial information in addition to
temporal dynamics, which makes it fundamentally different from
time-series data. This work explores the viability and implications
of representing eye-tracking data as visual inputs for MLLMs.

In data visualization, eye-tracking data is often represented using
scanpaths and heatmaps [1, 15]. Scanpaths illustrate the sequence of
gaze movements as thin lines, conveying both spatial positions and
temporal progression. In contrast, heatmaps provide a color-coded
overview of attention distribution, emphasizing spatial density
while omitting temporal information. Alongside these methods,
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Figure 1: Three visualization types—(A) time-series plot,
(B) scanpath, and (C) heatmap—are used to represent eye-
tracking data across six activity categories (shown in rows).

this study also incorporates a time-series line plot, which directly
depicts gaze coordinates against a time axis to highlight temporal
dynamics. Accordingly, this study investigates (1) whether visual
prompts can serve as a more efficient and effective alternative to
raw text, and (2) how the performance of different representations
varies across behavioral categories, and what this reveals about
MLLM'’s visual interpretation process.

Our results are as follows. First, visual prompts outperform text-
based raw data in both accuracy and token efficiency. Second, the
heatmap demonstrates strong overall performance, whereas the
effectiveness of each visualization varies depending on the specific
activity. It highlights the importance of choosing an appropriate
visual encoding that matches the specific nature of the activity
being analyzed, rather than relying on a one-size-fits-all visualiza-
tion. Our contribution extends the visual prompting paradigm to
spatio-temporal data and provides an initial investigation into how
different visual representations can support MLLM reasoning.

2 Methodology
2.1 Data Preparation

This study utilized GazeBase dataset [6], a comprehensive longitu-
dinal dataset consisting of 12,334 monocular eye movement record-
ings from 322 participants. The eye-tracking data were recorded at
1 ms intervals, with gaze positions measured in degrees of visual

Jae Young Choi et al.

-
## Instruction (A)
You are an expert in eye- ing data ysis and interp . Your job is to determine which
experimental activity a given eye-tracking data most likely corresponds to. You will be provided with
example data for each activity, along with a target data. Each data sample was processed through a
random 10-second windowing procedure after coll Based on data patterns and characteri-
stics, select the most appropriate activity for the target data.

—
## Activity Description (B)
1. **Horizontal Saccade**

Participants followed a bull's-eye target moving horizontally +15 dva from screen center, eliciting 30
dva horizontal les. The target maintained its position for one second before movement.

2. **Vlideo Viewing**

Participants watched the first *The Hobbit: The Desolation of Smaug* trailer without audio, including
natural eye movements during free viewing.

3. **Fixation**

Participants fixated on a static central bull's-eye target, maintaining gaze at the center of the display.
4. **Random Saccade**

Participants followed a bull's-eye target moving randomly across the screen, ranging from *15
degrees of visual angle horizontally and +9 degrees of visual angle vertically. The minimum degree
of target movement was 2 degrees of visual angle, and each position is maintained for one second.
5. **Reading**

Participant read a passage from Lewis Carroll's *The Hunting of the Snark*, without receiving
explicit instructions about what to do exactly.

6. **Balura Game**

Participants played a gaze-driven game which requires them to fixate on moving red balls to
elimnate them while avoiding blue balls. Fixation feedback was provided via visual highlighting. Red
balls sometimes required re-fixation.

## Examples (c)
1.**Horizontal Saccade** 2.**Video Viewing** 6.**Balura Game**
I[Horizontal Saccade] I[Video Viewing] ![Balura Game]

## Question **Target Data** (D)
When the target data is provided for a task to classify which activity it ![Target Data]
d

belongs to, what is the most likely answer among [Horizontal 3 - ==
Video Viewing, Fixation, Random Saccade, Reading, Balura Game]?

## Answer :

Figure 2: Prompt structure used in experiments. (A) Instruc-
tion (B) Explanation of six categories (C) Example visual
prompts (one-shot only) (D) Question with target data.

angle (dva). Each subject demonstrated six distinct eye-tracking
activities: Horizontal Saccade (HSS), Video Viewing (VID)!, Fixation
(FXS), Random Saccade (RAN), Reading (TEX), and Playing Balura
Game (BLG). The dataset was collected longitudinally over nine
rounds, with participant numbers decreasing from 322 to 14 in the
final (9th) round. Based on our investigation, recordings from the
later rounds tend to be much cleaner. We therefore sampled two
subsets—a one-shot example and a test set—for the classification
experiment accordingly. Specifically, the one-shot example consists
of eye-tracking data of a single randomly selected subject from the
final round. In contrast, the test set comprises 30 randomly selected
participants from the first round to ensure a robust evaluation of the
model’s generalization. The selected participants are demographi-
cally balanced (15 females, 15 males; Mage = 21.87, SDage = 4.08)
and reflect the overall composition of the original dataset.

To maintain a consistent input length across samples, each record-
ing was trimmed to a 10-second window and then converted into
four commonly used representations[2, 16]: raw text data, time-
series plot, scanpath, and heatmap. All numeric values in the raw
text data were rounded to two decimal places to maintain concise-
ness and avoid unnecessary precision. Additionally, all chart images
were automatically resized to a uniform 1229 x 768 pixels due to
OpenAl’s API policy.

! Although the original dataset contains two video viewing activities, we used the first
one only, to ensure distinct activity categories and avoid redundancy.
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Figure 3: Accuracy comparison between zero-shot and one-
shot settings across various data representations, showing
(A) overall and (B) per-activity categories.

RawText TimeSeries Scanpath Heatmap

2.2 Experimental Design

To compare the effectiveness of the four data representations, we
performed a standard classification experiment targeting six pre-
defined eye-tracking activities. The experiments were carried out
using GPT-40-2024-11-20 [13]. To better understand the process of
answering, we designed a structured output [14] using the Chain-
of-Thought method [17] to generate step-by-step reasoning. In
order to examine the model’s ability to generalize to new tasks
and the performance gain achievable with minimal supervision, we
created both zero-shot and one-shot prompts. The prompts consist
of four sections, as shown in Figure 2. First, the Instruction sec-
tion provides the model with context and guidance, followed by
the Activity Description that outlines the characteristics of the six
classes of eye-tracking activity. Only the one-shot prompt has the
Examples section that provides six example representations. Lastly,
both prompts conclude with the Question section that presents the
target instance to be classified. To maintain consistency between
modalities, both the visual and raw text inputs were uniformly
labeled as “data.” Furthermore, to mitigate ordering bias [23], we
rotated the order of descriptions and examples for each activity.

3 Results

Text vs. Visual Representations. As shown in Figure 3(A), all
visual representations—time series plot, scanpath, and heatmap—
consistently outperformed the raw text input, except for VID activ-
ity, where no representations achieved over 0.4 accuracy. In general,
the heatmap achieved the highest accuracy in both zero-shot and
one-shot settings, reaching 0.561 and 0.739, respectively. However,
BLG was an exceptional case where the one-shot scanpath achieved
the higher accuracy, as shown in Figure 3(B).

Zero-shot vs. One-shot. One-shot prompting generally resulted
in higher accuracy. For instance, the time series plot, which achieved
0.311 in the zero-shot setting, doubled its accuracy to 0.622 in the
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one-shot condition. However, for scanpath visualizations, one-shot
prompting did not outperform zero-shot for three activities (HSS,
FXS, and RAN), indicating that the added example did not reliably
enhance classification accuracy.

Activity Categories. An analysis of performance by task cate-
gory, as detailed in Figure 3(B), reveals several key patterns. Overall,
the heatmap representation yielded the highest accuracy for tasks
such as HSS, FXS, and RAN in both settings. Although one-shot
learning generally improved accuracy, exceptions were observed.
Specifically, performance decreased for HSS with the time-series
plot and scanpath, for FXS and RAN with the scanpath, and for BLG
with the raw text and heatmap. Conversely, classifying VID proved
challenging under all conditions. And for BLG in the one-shot set-
ting, the accuracy of the scanpath (0.60) and the time-series plot
(0.40) was higher than the precision of the heatmap (0.33).

The confusion matrices in Figure 4 illustrate specific misclassi-
fication patterns. In the zero-shot condition, the time-series plot
commonly misclassified other activities as HSS; for instance, 27
TEX and 20 RAN cases. For the one-shot condition, a common error
across all visual methods was incorrectly classifying VID as BLG
cases, which occurred 13 times for time-series, 13 for scanpath, and
10 for heatmap (N=30 for each activity). A mutual misclassification
pattern was also observed between BLG and RAN. BLG was often
mislabeled as RAN, a tendency prominent in the zero-shot setting
(e.g., 18 out of 30 for both the time-series plot and the heatmap)
but still present in the one-shot condition (e.g., 15 out of 30 for the
time-series plot and 19 out of 30 for the heatmap). Conversely, RAN
was also frequently misclassified as BLG, especially in the one-shot
scanpath results (9 out of 30 cases).

Input Token Efficiency. Token counts for text inputs were cal-
culated by using the c1100k_base encoding scheme [12]. Each
visualization image was automatically split into six 512x512 tiles,
with each image using 1,105 tokens?. As a result, the use of visual
representations was confirmed to be substantially more efficient
in token consumption than using raw text input. In the zero-shot
condition, raw text input required an average of 10,148 tokens,
whereas all three visual prompts consistently used only 1,527 to-
kens. Similarly, in the one-shot condition, raw text input consumed
an average of 69,928 tokens, while the visual prompts required
8,294 tokens. By using visual prompts, token consumption in this
experiment was reduced to 15.05% and 11.96% of the raw text in
the zero-shot and one-shot settings, respectively.

4 Discussions

Efficacy of Turning Eye-Tracking Data into Visual Prompts.
Our findings confirm that for eye-tracking data, visual prompting
is an effective strategy for enhancing classification accuracy while
substantially reducing token usage, extending prior work into the
spatio-temporal domain of gaze analysis. We evaluated multiple
visualization techniques and discovered that the heatmap repre-
sentation consistently yielded the highest accuracy. This result is
noteworthy because heatmaps lack explicit temporal information.
This suggests that for gaze-based tasks, a concise summary of spa-
tial attention can be a more powerful feature for an MLLM than a
verbose sequence of raw gaze coordinates.

2Based on GPT-40’s calculation: 85 base tokens + 170 tokens per tile.
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Figure 4: Confusion matrices of four data representation types in (A) zero-shot setting and (B) one-shot setting.

Aligning Visualizations with Behavioral Characteristics. A
more detailed observation is that the optimal visualization method
varies with the nature of the behavioral categories. For instance, in
activities that create spatially predictable and dense fixation zones,
such as the point-to-point movements in HSS, RAN, and TEX, or
the single focus point in FXS, the heatmap’s ability to summarize
these high-density areas proved superior.

However, for BLG, both the time-series plot and scanpath repre-
sentations achieved higher accuracy than the heatmap in the one-
shot condition. This activity involves tracking dynamically moving
objects, a process where temporal and sequential information is
critical. The MLLM’s Chain-of-Thought reasoning supported this,
noting that the one-shot scanpath revealed "Observed the pattern of
dense and intricate movements without a strongly defined pattern.” In
contrast, all visual methods performed poorly on VID, frequently
misclassifying it as RAN and BLG. One of the reasoning steps for
zero-shot time-series states: "From the image of the eye-tracking
data, we observe multiple saccades with significant movement in both
X and Y axes." The free-viewing nature of VID lacks a distinct gaze
signature, making it difficult to classify without additional context,
while the model can capture the shared high-level feature of dy-
namic movement presented both in VID and BLG. This suggests that
for less structured activities, gaze data alone may be insufficient for
MLLMs to distinguish the subtle differences.

5 Limitation and Future Work

Enhancing Visual Representations. The visualizations used
in this study were foundational. The scanpath, for instance, illus-
trates the connections between gaze points but does not explicitly
represent the temporal order of movements or the duration of fixa-
tions. Techniques such as varying marker sizes [1] to indicate dwell
time were not incorporated, limiting the information available on
fixation points. Similarly, our heatmaps were generated without
being overlaid on a specific stimulus, which is a common practice in
user interface analysis [5]. However, given the strong performance
of the informationally simple heatmap, this future work should also
systematically investigate the trade-off between information den-
sity and abstractive clarity. Determining the optimal level of detail
that aids MLLM reasoning remains a topic for future exploration.

Expanding the Scope of Eye Tracking Tasks. This study fo-
cused on an activity classification task based on gaze data, which
is not the only problem addressed with eye-tracking. There is an
opportunity to investigate whether visual prompting can be effec-
tive for other common eye-tracking analyses. Future research could
explore the application of this method to tasks such as saliency
prediction, user identification, or cognitive load estimation from
gaze patterns. Moreover, as MLLMs can interpret natural language
instructions, their integration into cyber-physical systems could
facilitate more open-ended task execution and complex reasoning,
unconstrained by predefined analytical scopes.

Generalization to Other Trajectory Data. The methodology
of representing tracking data as visual inputs for MLLMs holds
promise beyond eye-tracking. This approach can be generalized
to a wide variety of trajectory tracking data. For example, a user’s
physical movement traces from wearable sensors, the navigation
paths of robots or drones, or GPS-based vehicle logs could be simi-
larly visualized. Such data could be rendered as two-dimensional or
three-dimensional path plots, which are spatially grounded. This
could unlock advanced capabilities such as path forecasting, anom-
aly detection, or generating explanations for observed movements.
Ultimately, this approach could significantly advance how MLLMs
process and reason about dynamic events from sensor data, offering
a new method for analyzing real-world’s physical behaviors.

6 Conclusion

This study investigated the effectiveness of using image represen-
tations of eye-tracking data as visual prompts for MLLMs. Our
experiments demonstrated that visualization methods, particularly
heatmaps, significantly outperform raw text inputs in a classifi-
cation job setting, achieving higher accuracy while dramatically
reducing token consumption. This work confirms that transforming
complex sensor data into an appropriate visual format is a viable
and efficient strategy for enabling MLLMs to interpret nuanced hu-
man behaviors from trajectory data. Furthermore, our finding that
different visualizations excel at different tasks suggests that future
research should focus on tailoring visual representations to specific
analytical goals to fully leverage the capabilities of reasoning and
understanding real-world context of MLLMs.
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